Analysis of a Class of Penalty Methods for Computing Singular Minimizers
نویسندگان
چکیده
Amongst the more exciting phenomena in the field of nonlinear partial differential equations is the Lavrentiev phenomenon which occurs in the calculus of variations. We prove that a conforming finite element method fails if and only if the Lavrentiev phenomenon is present. Consequently, nonstandard finite element methods have to be designed for the detection of the Lavrentiev phenomenon in the computational calculus of variations. We formulate and analyze a general strategy for solving variational problems in the presence of the Lavrentiev phenomenon based on a splitting and penalization strategy. We establish convergence results under mild conditions on the stored energy function. Moreover, we present practical strategies for the solution of the discretized problems and for the choice of the penalty parameter. 2000 Mathematics Subject Classification: 65N12; 65N25; 65N30; 65N50.
منابع مشابه
Penalty Methods for a Class of Non-Lipschitz Optimization Problems
We consider a class of constrained optimization problems with a possibly nonconvex non-Lipschitz objective and a convex feasible set being the intersection of a polyhedron and a possibly degenerate ellipsoid. Such problems have a wide range of applications in data science, where the objective is used for inducing sparsity in the solutions while the constraint set models the noise tolerance and ...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملCharacterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 10 شماره
صفحات -
تاریخ انتشار 2010